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ON A NONNEGATIVE SOLUTIONS OF THE HEAT EQUATION WITH
SINGULAR POTENTIAL IN THE CONICAL DOMAIN

B.A. HUDAYKULIYEV !

ABSTRACT. In this paper we study the behavior of nonnegative solution of the Cauchy-Dirichlet
problem for the heat equation with a singular potential in the domain Q, = GN B, = GN
B,(0,7) C R™,n > 3, where G be a cone in R™ and r < e, '. Existence and nonexistence of
nonnegative solutions are analyzed.
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1. INTRODUCTION

In this paper we consider the problem

ou

5 Au =V (z)u+ f(z,t), (1)
ulog, =0, t>0, (2)
u(z, t)|i=0 = uo(z), x€Q, (3)

in the domain Q, x (0,T), where Q, = GNB, C R"(n > 3);ep = l,e1 =e,...,e, = expe,_1,V >
Lx = (z1,...,7,) € Q, B, = B,(0,e,!) = {x € R" : |z| < ¢;}} C R™ and 99, — the boundary
of Q2,,0 < T < 00, be a cone with vertex at the origin. We suppose that the boundary of €2,
except the origin, is smooth enough.

Under solution to the equation (1) we mean the generalized function u(x,t) € D'(2, x (0,T)),
such that u(z,t) > 0,Vu € Ly 1oc( x (0,T)). Assumed that 0 < V(z) € L1(€,),0 < up(z) €
L1(Q2) and f(z,t) € L1(Q x (0,T)), where Ly joc(€2, % (0,T'))— is the space of locally integrable
functions, L1 (2)— is the space of integrable functions. We denote by D’— the space of generalized
functions.

The condition (3) means that

ess lim u(x,t)(b(x)dm—/uo(m)qﬁ(x)dx

t—0
174 QV
for any ¢(z) € D(2) = C§° ().
In the polar coordinates (r,w), where r = |z|,w = (w1,w2,...,wn—1), the Laplace operator is
given by
7?2 n-10 1
A= — — + —=A
or? r or + r2
where A, the Beltrami operator. Let A1 be a first eigenvalue of the operator —A, on G NIB,
with zero Dirichlet condition on 0G N dB,, Yi(w) be a eigenfunction, corresponding to A;.
Let Fo(z) = |z|, F,(x) =In|F,_1(x)|,v > 1,2 # 0. If we set

pl(x) = [z ()2 By (@) 2B ()Y (), (4)
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then it is easy to show that

B (n— 2)2 1 1
—Ae=( 1F@) AR FNw) AR @) F (@)
a(2—a) At
"R FLeRE T R@
so that
Ay (n—2)? 1 1 c A

o T AR() | ARI@FR@) T ARR(0) R (z) | AFR(@)FR (o) FE@) | Fe(x)

where ¢ = a(2 — «). Note that the smaller root o of @(2 — ) = ¢ is given by a =1 — /1 —¢
and Ap € L1(Q,), when 0 < o < 1.

Put
(n —2)? 1 c A1

4F()2(x) " 4F02($)F12(ZC) o 4F02(1')FV2_1($)F3(:U) T FOZ(CC)7x €. (5)

In this paper is studied the behavior of nonnegative solutions to the problem (1)-(3), when
Vo(z) is given by (5), and is proved that if 0 < ¢ <1 and V(x) < Vp(z) in §2,, then the problem
has a nonnegative solution; if ¢ > 1 and V(z) > Vp(x) in €, then the problem does not have
nonnegative solution if either ug(x) > 0 or f(x,t) > 0.

In several reaction-diffusion problems involving the heat equation with supercritical reaction
term, it appears a stationary singular solution. For instance, this is the case for u; — Au = n-e",
and ug — Au = n-u+u’~!, where 2n/(n—2) < (. The linearization on this singular solution gives
a linearized equation of the type u; — Au = ﬁ u. This linear equation is a borderline case with

Vo(z) =

respect to the classical theory of parabolic equations, namely, the potential c-|z|~2 belongs to Ll oc
if and only if 1 < p < n/2; therefore the standard uniqueness and regularity theories do not apply
to this case. For this reason the study of this kind of equation is interesting. The linear equation

— Au = % - u was studied by Baras-Goldstein in [2], where it was obtained the behavior
of the solutions depending on the values of the parameter c. More precisely Baras-Goldstein
prove that the critical value Cy(n) = (n — 2)?/4, determines the behavior of the solutions to
the equation u; — Au = ﬁ - u. They found that if ¢ > C.(n), then the above problem has no
nonnegative solutions except u(z,t) = 0 and if ¢ < C,(n), positive weak solutions do exist. The
result in [2] stimulated several interesting results in the study of heat equation with singular
potentials; see [4], [3], [1], [6].

2. MAIN RESULTS
The following theorem is our main result:

Theorem 2.1. 1. If0 < ¢ < 1 and V(z) < Vy(z) in Q,, then the problem (1)-(3) has a
nonnegative solution u(x,t) if

Q/ o(x)p( d:c<oo//fxt x)dxdt < oo,

0 Q,
where (x) is given by (4)
2. If either up(x) > 0 or f(x,t) > 0 in Q, x (0,¢) for each € € (0,T) and V(z) > Vo(x), then
given Q' C Q,, such that 0 N 0N, = {0}, there is a constant C' = C(¢e,Y) > 0 such that
u(z,t) = Cop(x)

if (z,t) € Q' x [, T).
3. If ¢ > 1 and V(z) > Vo(x) in Q,, then the problem does not have nonnegative solution if
either ug(x) > 0 or f(x,t) > 0.
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Proof of theorem. 1). We first prove the existence part. We shall attack (1)-(3) by studying
the approximate problem

Ou,
W — Auyy, = Vm(x>um + fm7 (lm)
Umlog, =0, t>0, (2m)
um|t:0 = UO($)7 T e QV) (3m)

where Vi, (z) € Loo(£2,),0 < Vi (x) < V(z), and Vi (x) T V(2z) a.e in Q, fr, = min{f,m}. The
problem (1,,) — (3,;) has a unique bounded nonnegative solution (see [5]) which satisfies the
integral equation

¢ ¢
U (2, 1) = ePug + /e(tS)AVmum(s)dS + /e(tS)Afm(s)ds, (6)
0 0

where {em; t > 0} denotes the semigroup generated by A with Dirichlet boundary conditions;
note that the perturbation V;,, defines a bounded multiplication operator on L,(€2,) for all p > 1.
Also,

(€Bua) = [ o)l (7)
Q.

where 6,(y)— the Dirak’s function.
The sequence of nonnegative functions {u,(z,t)} is clearly increasing.

We first show that assumptions on the data implies the existence of a solution. Let p € C?(R)
be a convex function satisfying p(0) = p’(0) = 0. Multiply the equation (1,,) by p'(um, )¢, where
¢ = p(x) is given by (4), and integrate over €, x [0,t) for 0 < § < t < T. One gets, using
integration by parts,

t

/p(um(t))goda:+//VumV(p’(um)go)dxdt = /t/(Vmum—|—fm)p/(um)g0dxdt+/p(um(5))(pd:r,

Qu 6 o Qy Qy

whence, since p is convex,

[ plun®)pds + / [ ol (-2 dad < / [ Vit + ) )it + [ (8
5 Q 5 Q.

Q. Q

Replace p(r) by a sequence p;(r) satisfying the hypotheses for p and converging to |r| as | — oo.
We obtain the limiting inequality

/ i (£) iz + /t / (= Ap)dzdl < /t / Vit -+ fin)ipddadt + / um(O)pdz.  (8)

Q o o Q

We want to let § — 0. First we claim that

To see why this is so, note that

5 5
g < i (8) = X AHVim)yg +/6(55)(A+vm)fm(s)d8 < efhy, +65A/6(55)Afm(8)d57
0 0
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if ||[Vinlloo < A, since edAHVmyg = lim (e2/1e0Vm/)iyy < e¥e9%uy by the positivity preserving

71— 00

property of {e®*}. Thus
/(e‘muo)godx < /um(5)80d:c < 6‘”‘/(‘36AU0)‘PCl$ + 65)\5”me00/‘de’

Ql, Qy Qy QV

whence

as § — 0, as asserted. Letting 6 — 0 in (8), we deduce

t t t
/um(t)god:n+//um(—Ag0)d:Bdt§ //Vmumgpdmdt+//fm<pdwdt+/uo(a:)goda:.
0 Q 0 Q 0 Q

Q. v v v Q
But —Ap > Vp,(z)p. Consequently

[t < / [ hwstait+ [ atorots,

Q, 0 Q. Q

j / Frpdadt + / uo(z)pdz < 0o

0 Q, Q
we conclude that u,,(z,t) increases to a finite limit u(z,t) as m — oo, for all ¢ € (0,7) and for
a.e. r €.
Pick a point (g, t) such that u(wzg,to) is finite. Let v, = €'uy,. Then

and therefore if

OV B '
W — A'Um = (Vm + 1)'Um +e fm

Applying (6) and (7) to vy, gives
to
un(aosto) = [ [0 I35, ) (Vinly) + V(. s)e*dys. (9)
00

If Q' C Q, such that 9 NI, = {0} and 0 < e < T,
inf{(e526,,)(y) : (y,s) € Q' x [¢,T]} = ¢o > 0.

Therefore
to—e to—e
co / /Vm(y)um(y,s)dyds—i—co / /um(y,s)dyds§etoum(azo,to). (10)
0 0

By hypothesis, u,, increases to u and V,u,, increases to Vu in L1 (2 x (0,t9 —¢€)), and u(x,t) is
a solution (1)-(3) in the sense of generalized functions. This solution u(z,t) satisfies the integral
equation

u(z,t) = / 20, (y)uo(y)dy + / / IR, (y)V (y)uly, s)dyds+
Q, 0 Q

t
+ [ [ e26.(y) f(y, s)dyds
/]
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a.e. in Q, x (0,tp). By (9),
(y,8) = 07926, (y)V (y)uly, s) € L1 x (0,t0))

since im w,(x,t) = u(x,t) < co a.e. in Q, x (0,t9). The first part of theorem is proven.
2). Our next assertion is that If V(z) > Vp(x) and wug(z) is not identically zero, for € > 0 and
Y c Q, with 9Q' N 9N, = {0}, there is a constant C' = C(¢, ) > 0 such that
u(a.t) > Co(a) (11)

forall z € Q" and t € [¢,T).

For the proof we first recall that if ug > 0, there is a positive constant Cy such that etAuo(y) > Cy

if z € Q and t € [¢/2,T). Next u is bounded below by the solution w of

%—Q: —Aw="Vow in D'(Q, x[g/2,T)),
w=0 on 0, w(yec/2)=Coxa(y) in £,

and w is the (increasing) limit of the unique nonnegative solution w;, of
Owm,
ot

wm =0 on 90, wn(y,e/2)=Coxa(y) in Q.

Choose a ball B = By = B(0,7q),70 < e;!. Let Qg = Q' N By, Qy C . Then w,, > v, where
Oup,
ot

vm =0 on 0y, vn(y,e/2)=Cy in o,

where here and in the sequel V;,, = inf{Vp, m}. Multiply (12) by Uﬁfltp%p for p > 1 and integrate

to obtain

_ Awm = ViWm Zn D/(QV X [6/2?T))7

— Avy, = Vv in D'(Qg x [€/2,T)), (12)

0 _ Umn 1 9_ Umn

L ] e A e e A
Qo Q Qo

Setting ky, = v /@ we get

o _ Alp—1
50 |7 1/ki’n¢2dy +(ppz)/!W%z!%zdw/kfn(—Aw)wdy=/mG$’n<p2dy-
Qo Qo Qo Qo

Recall that V;,, < Vo(z) = —Ap/p. Thus Vy,p? < (—Ap)e and consequently

0

5 p‘l/k%so2dy <0,

Qo

1/p 1/p
/ VP > Pdy < Cy (7/ > Pdy :
0

0

whence for /2 <t < T,

the right side being the value of the left side for t = £/2. Letting p — oo it follows that k,, < Cj
a.e. in )y, which is equivalent to v,, < Cyp a.e. in g We are now justified in setting

v= lim v,, k= lim k,.
m—o0 m—0o0

We will show that
1
Co > k(x,t) >C1 for e<t<T and ae. z€ 590 = QN B(0, 2—0) (13)
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(Here k(z,t) < Cp is already proven.) Since u > w > wy, > U > kp, (13) implies (12) with
y € Q' = 3Q. And for y € '\ 10 we have (since u > e®ug)

Ky, 1) = ¢~ (y)(euo)(y) = Co > 0
forally € ', o (y) > C3 >0in Q' \ %Qo, where Cy and C3 are suitable constants.
Let g : [0,00[— [0,00[ be convex and of class C2. Multiply (12) by ¢'(km)g(km)pw?, where
km = 2,0 = P(z,t) € C§°(Qo % (/2,T)), and integrate over Q = Qy x (¢/2,T)) :

OUm

ol (i) (o0 ot = [ Avng! (gt ot = [ Viwtng! ()b it .

Q Q Q
(14)

Straightforward computations give

O

OUm

Ot (k)9 b )i vt = / W | ()~ [ g dods
Q Q
—/Avmg’(k )g(km ) dadt = /v g (k) g(km)op?)dxdt =
Q Q
/ V() P dadt + [ ' on) Vi Py ) 0P dadr
Q

/ Vg(k )@ Vep?dxdt + / (k) g(km)kmph? (—A)dadt.

Q

Whence
/ Y2z | (t) — / 2 (k)2 ¢dxdt+
Q

/vg 2v¢2dxdt+/ (k) |V |2g(km ) @* b dadt+

Q
+ / Vg (km) [P @*¢* dadt = / (AQ + Vinsp) g (km) g (k) km o) dacdt.

Q

The fourth term on the left is nonnegative since g is convex and nonnegative; for the third term
we will use the Cauchy’s inequality:

1
/vg )2 Vpdadt| < 2/|Vg(k:m)|2g021/;2dxdt+2/92(km)g02\vw|2d:cdt.
Q
Therefore
1
/ YR | (1) + / Vg (k)220 dadt <
Q

</ <2|vw|2+w ) 2 )Pt + [ (80 + Vi) Ui i,
Q Q

Take B, = B(0,7) to have sufficient by small radius, i.e. » < ro < e;1,Q, = Q' N B,. Since
Vin(z) < Vo(x) = —Ag/p the second term on the right side of the above inequality tends to zero
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as m — oo by Lebesgue’s dominated convergence theorem. (Here we are using ||k, ||c0 < Const
in Q and the hypotheses on g). Thus when m — oo we obtain

(7/ P (k) e | () + / Vg(k) P2 dadt < 2 / (zrwr%w%‘f)g?(k)ﬁdxdt. (15)
r Q Q

Now choose 9(x,t) so that: 0 < ¢(x) < L;9¢(z,t) = 1 in Q5 X [s + 6, T],¢¥(x,t) = 0 in
(0 \ Q) x [0,T]) U (Q x [0,8]), where s > 0,8 > 0. We further suppose that |Vi|? <
Cy672, %—f\ < C4671, where the constant C; > 0 is independent of the pair (s,d). Inequality
(15) then yields

T T
/ G2 (k) p*p?dx + / / Vg (k) |[>p*dzdt < 60,62 / / g (k)p?dxdt. (16)
Qs s+6Q_s s Q

for all t € [s 4+ §,T). Now we will prove the following inequality
Lemma.Let 0 < r < e, h(s) € C[0,7]. Then for 2 < q <4, 0 < a <1 the inequality is true

2/q r

[ IISIF ) Fa ) Fs) s | <K [I06)P+ R () B ()1 ()]s,
0 0
(17)
where the constant K = K(n,o,v) >0, and o is defined by o(2 — a) = c.
Proof. We first prove the inequality: Let 0 < r <e,!,0 < h(s) € C'[0,7] and h(r) = 0. Then
for 2 < g <4 and 0 < a < 1 the inequality is true

2/q

/|h(s)]qs]F1(s)...F,,1(3)\|F,,(s)|°‘ds <K/]h'(s)]23\F1(s)...F,,1(3)|]Fy(s)|o‘ds, (18)
0 0

Integrating by parts and using the Holder’s inequality, it is easy to show that

r

/hq(s)s\Fl(s)...Fy_l(sﬂ]Fy(s)]ads < K/hq1(3)|h’(s)\s\Fl(s)...FV_l(s)HFy(s)]ads <
0 0

N|=
N|=

r

< K /h2(q_1)(s)s3\F1(s)...F,,1(3)|]Fy(s)|°‘ds /h'(s)]2s|F1(s)...Fl,1(3)|]Fl,(s)|o‘ds <
0 0
< K, /\h’(s)]25\F1(s)...FV_1(s)]Fy(s)]ads /hq(s)s]Fl(s)...Fl,_l(s)\]Fy(s)]ads «
0 0

1
2
x| sup {h7%(s)s%} ),
s€[0,7]
where K1 = K1(n,a,v) > 0. Whence

T

/hq(s)s|F1(s)...F,,1(5)||Fl,(8)|°‘d8 < K%/|h'(s)|23|F1(s)...F,,1(3)||F,,(5)|O‘ds><
0 0

x sup {h77%(s)s?}.
s€[0,7]
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Now we will show that

q—2

2

s€[0,r]

sup {h97%(s)s?} < Ko (/ h’(s)QsFl(s)...F,,1(3)Fy(s)ads)
0

2 g2

We have (note that h92(s)s? = [h(s)sa-2] 2 .)

s€[0,r] s€[0,7] s€[0,r]

< sup 53_2 /\h’(r)|27']F1(7')
s€[0,r] ]

< sup M(s)
s€[0,r]

r 1/2
d=g iq (72 — 52 1/2
M(s) = sa= / rdr| =si? < 5 ) :

S

sup sﬁh(s) = sup s%{h(s)s — h(r)r} = sup i s {/(h(T)T)/dT} <

~
\\3
=
= =
) N
- ?
B
2
: _Q
‘ QU
\]
\_/
: \
el _
3 E?
e
QU
\]
~—_
eI
3
)
)
~—
wl
AN

where

since |F1(7)...F,_1(7)||F,(7)]* > 1, when 0 < s < r < e, 1. It is clear that there is a constant

K3 > 0, such that sup M(s) < Kj3. This proves (18). Next we deduce (17). Fix p > 0 and
s€(0,r]

let 7 > p. Let h € CY(0,7). Let £ € Cl[r,2r] satisfy 0 < € < 1,6 = 0in [r + p/2,2r],& = 1
in [r,r + p/4], and 0 > & > —5p~ ! in [r,2r]. Let ¢(s) be h(s) or h(2r — s)&(s) according as
s € [0,7) or s € [r,2r]. Then by (18)

r 2/q
(/ hi(s)s|Fi(s) - ... Fy—1(s)||Fu(s) C“ds) (/ Yi(s)s|Fi(s) - ... - Fyl(s)Fy(s)ads) <
0

2r r
< Ko / ((8)?SIF1(5) .- For ()| Fo(5)|ds < Ko / (B (3)25|FA(5) - .- o1 (5)[| Ful(s)| s+
0 0
2r

49 /(h’(2r — S)2E2($)S|FA(5) - o+ Fya(5)||Fo ()| dst

T

2r

/ B2(2r = $)(/ ()8 F1(s) - .- Fyrr(5)]| ()| ds] <

T

< K, / V25FA(s) - oo By 1 (5)]|F(s)[*ds+
0

T

+2 / (h’(o))2(2r —0)|F1(2r—o) ...  Fy,_1(2r — o)||F,(2r — 0)|*do+

r—p/2
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r—p/4
12 / W2(0)(€'(2r — 0))2(2r — 0)|FL(2r — 0) - ... - Fy_1(2r — 0)|| (21 — 0)[*do] <

r—p/2
r

< K, [1 Lo T Hr/ 2} / (W ())28|FL(5) - .. - Fyr (8)]|Fy(s)|2dst

r—p/2 )

r

+50p_2K0T+p/2/h2(s)s|F1(s) v Buq(9)||Fu(s)|%ds <

r—p/20

< Ky /(h’(s))2s|F1(s) e Fy g (9)||Fu(s)|%ds + Kg,/hQ(s)s\Fl(s) v Fy_1(9)||Fu(s)|%ds,
0 0

where o = 2r — s. The inequality (17) is proven. The lemma is proven.
Let A, be the first eigenvalue of the operator —A, on G N 0B, with zero Dirichlet condition

on 0G N OB, Y,(w) be a eigenfunction, corresponding to A,. From (17) for any nonnegative
function h(x) € C1(£2,.), we get

[ ISIE () B s DI 5) Y ) s <

GNoBr 0

<(x /][

GNoB; 0

q/2

2
s|Fy(8)...F,_1(s)||F,(5)|*Y,?(w)dsdw <

+ h2(s)

, a/2

< (K / /[]Vh|2 + h2(s)]s|F1(s)...F,_1(8)||F, (8)|*Y;2(w)dsdw ,
GNoB, 0

whence (by (4

Qr

)
2/q
(W/ h<x>q¢2<x>dx) < / V() + h ()] (x)d.

Define G by 8 + % =1, where 2 < ¢ < 4. By Hélder’s inequality and last inequality we obtain,

for a nonnegative function h,

2/q 8
/hQHﬂchdx < (n/ hip?dx (W/ R2p%dx | <
Q r r
B
/ |Vh|?p2de + / h2p%dx (7/ R2otdx |
- Q- ,

<

ot

whence

b b b ’
//h2+26¢2dxdt§ Cs //!Vh\QthdxdtJr//hch?dwdt sup (7/ ho*de |, (19)
a<t<b
a Q. o "

a Q, a Qp
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From (16) we deduce

T
sup /92(k(t))902drc < 6045_2//92(k)g02dxdt.

t€[s+6,T)
Q. s Qp

Whence replacing h by g(k) and applying (19) with [a,b] = [s+J,T] and with €,_s in place €,
we get

T T
/ / 2 (k) Rdadt < Cs(6C402 + 1) / / Vg(k) 202 dzdt | x
546 Qs s Qs
T s
X 60452//92(k)g02dmdt ,
s Q
whence
. 1/(2+20) T 1/2
/ / ¢*28(k)p2dzdt < [CY2(6C, + 1))/ +B) 5= / / g (k)p*dedt | =
S+8 Qs s Qr
T 1/2
= Ce0? //gQ(k)chdacdt : (20)
s Q

Let ¢ > 0 be a small number and let
_a . B 148 _ a
0= 55 M =TTjrl =Tj = 55, 0i+41 = 9; 5841 = 8j + 55
1/2

T
Hj = //g?(k)&dxdt =123,
S QT]

where g1 = g, and r1; and s; are given positive numbers. With this notation the estimate (20)
yields

1/(148 .
1Y < oatH,

whence, by induction

Hjl/(]-"l‘ﬁ) S (C?Clil)aj 2'y]'H](-1+B)j727

. J=2 j—1 .
where a; = (1+8)/72 30 (L+8) 9 = X (L+p)(1+8)/ >
pu=0 u=0
Now let j — oo. Since gj = g(1+ﬂ)]71 we get

T 1/2

Qpy —aX[s14a,T] F
1 Sip

Replace g by a sequence {g;} satisfying the hypotheses and tending to k=7 as | — co. We then
obtain
1/2

T
sup k(1) < (Cra~1t20+0)/8Y(1+08)/8 //k_zvcpzd:cdt
QTl_aX[sl-‘ra,T] R
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Now set s1 = 3e/4,a =¢/4,r1 < 19, where £ > o is given. Note that
v
k(z, 1) = — > o7 (@)(e" o) (x) = CoClp ™ ()
¥

for (z,t) € Q, x (3¢/4,T), where the constant Cg is independent of 7 and ¢ (but Cyp depends
on ¢, as before). Thus we obtain

- 1/2
sup k™7 (z,t) < 090675_1_1/6 / / O* T dadt
Qr175/4><[57T]
38/4 er
which implies the estimate
—1/2v
k(z,t) > C19Coe M H1/B)/ / Oy (21)

Qry
for a.e. x € Q,,_./4 and for all ¢ € [¢, T], where the constant C1o > 0 is independent of the pair
(r1,€). The inequality (13), consequently and the inequality (11) is proven.
3). Now we prove the last part of theorem.
Let ¢ > 1,V (z) > Vp(z). If (1)-(3) has a nonzero solution, then one has
ou A (n—2)2+ 1 - 1 N A1 N c—1
— —Au= U+ —————u
4F2(z)  4FZ(x)Fi(z) 4F2(z)..F2(z)  F}(x) 4F2(x)..F2(x)
in D'(, x (0,T)). From first part we know that the solution exists only if
c—1
4F2(z)...F2(x)
for ' C Q, and € > 0 (where we assume 02’ N 9Q, = {0}). From (11) follows that for any
Q' cQ,:
u(@,t) > Const - p(x) = Const - |x|~ 22| Py (2) V2. |F, 1 (2) V2B (2) 21 (w),

therefore

up € L1(Y x (0,T —¢))

N

—E&

c—1
S —-(n=2)/2| 12 \p, 12\p, 1/2y. S
) P By (@) 2 Byt ()] (@) Y25 () dadlt >

o

Q/

> C’onst/ 2| 7| Py (2)... F, ()| 1 YVE (w)de = oo.
Q/

This proves the last part of our theorem. The Theorem is proven.
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